Roll No.:....

C022513(022)

B. Tech. (Fifth Semester) Examination,
Nov.-Dec. 2021

AICTE (New Scheme)

(Computer Science & Engineering Branch)

FORMAL LANGUAGE and AUTOMATA THEORY

(BT3022)

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt all questions. Part (a) is compulsory & solve any two from (b), (c) & (d) of each questions.

Unit-I

1. (a) Prove that for any transition function δ and for any two intput string x & y,

$$\delta(q, xy) = \delta(\delta(q, x), y)$$

(b) Construct a DFA accepting all strings w over $\{0, 1\}$, such that number of 1's in w is 3 mod 4.

8

8

4

8

- (c) Construct Transition System which can accept strings over the alphabet *a*, *b*, containing either cat or rat.
- (d) Construct Mealy M/c which is equivalent to the Moore machine defined by table given. 8

Next state

	a = 0 $a = 1$ Output
$\rightarrow q_0$	q_1 q_2 1
q_1	q_3 q_2 0
q_2	q_2 q_1 1
q_3	$q_0 q_3 $ 1

Unit-II

- 2. (a) Write and explain Arden's Theorem for Regular expression.
 - (b) Consider the following transition system identify the string recognised.

- (c) What is pumping Lemma? Write its application. Show that $L = \{a^{2n} \mid n \ge 1\}$ is regular.
- (d) Construct a transition system corresponding to the regular expression.

(i)
$$(ab + c^*)^* b$$

(ii)
$$a+bb+bab^*a$$

male the convergence of the Unit-III ages points everal (co)

3. (a) Find a grammar generating

$$L = \{a^n b^n c^i \mid n \ge 1, i \ge 0\}$$
. Define grammar.

(b) Construct a grammar G generating

$$\left\{ xx \mid x \in \left\{a, b\right\}^* \right\}$$
 impossing similar by That impossed that

Give Chomsky hierarchy of grammar.

8

C022513(022)

PTO

[5]

(c)	Define Greibach Normal form. Convert the grammar	
	$S \to AB$, $A \to BS b$, $B \to SA a$ into GNF.	8

- (d) Reduce the following grammar to Chomsky normal form:
 - (i) $G = (\{S\}, \{a, b, c\}, \{S \rightarrow a|b|cSS\}, S)$
- (ii) $S \rightarrow abSb |a| aAb$, $A \rightarrow bS |aAAb|$

Unit-IV

- 4. (a) Construct a pda A accepting the set of all string over {a, b} with equal number of a'S and b'S.
 - (b) Define Turing Machine Model. Explain representation using Turing Machine.
 - (c) Write short notes on:
 - (i) Halting problem of Turing machine
 - (ii) Acceptance of push down Automata
 - (d) Design a TM that accept $\{0^n 1^n \mid n \ge 1\}$

5. (a) What is post correspondence problem. Prove that the PCP with {(01, 011), (1, 10), (1, 11)} has no solution.

(b) Show that:

8

- (i) $f(x, y) = x^y$ is primitive recursive
- (ii) $f_2(x, y) = x * y$ is primitive recursive
- (c) Compute A (1, 1); A (2, 1); A (1, 2); A (2, 2) using Ackersmann's function.

8

8

8

- (d) Write short notes on:
 - (i) Turing model for computation
 - (ii) Construct TM that can compute the zero function Z.